NEWS FROM REMBE®

La calidad en los productos y en la gestión siempre ha estado en el foco principal de REMBE®. En adición a la certificación existente ISO 9001 y otras numerosas acreditaciones internacionales, el sistema de gestión de calidad de REMBE® ahora también obtuvo la certificación ISO/TS 29001.

La ISO/TS 29001 fué desarrollada específicamente para la industria del petróleo y del gas y contempla requerimientos estrictos en bienes y servicios para asegurar una mejora constante en el sector. Esta última certificación de productos REMBE® y su calidad de procesos ha demostrado también el compromiso de REMBE® como proveedor de éste sector industrial.

La meta de la ISO/TS 29001 era el desarrollo de un solo document de gestión de calidad que respondiera a las necesidades de la industria del petróleo y de gas a nivel mundial, especialmente a las de las grandes corporaciones de petróleo, petroquímicas y de gas natural. Debido al alto grado de riesgo asociado con éste tipo de industrias, se requiere un alto grado de conformidad en ingeniería, normativa y requisitos del individuales del operador. La ISO/TS 29001 está disponible para fabricantes de equipos y materiales para la industria del petróleo y gas, compradores de equipos, materiales y servicios. El documento también puede ser usado por organizaciones para audiciones a sus proveedores o para certificaciones a terceros.

With seven branch offices and over 150 staff members worldwide, REMBE® is the global market leader for flameless explosion venting and specialist for process safety and industrial measurement. Twice a year, all of REMBE®'s foreign staff members come together for the REX (REMBE® EXchange of Views and Ideas) event.

El 13 y 14 de Febrero de este año, todos los empleados de REMBE® se capacitaron en las últimas innovaciones técnicas. “Sobre todo nuestros empleados del exterior deben estar al día de las novedades tecnológicas" dice Stefan Penno, director ejecutivo de REMBE® GMBH SAFETY+CONTROL. Como la empresa valora la experiencia externa, el Prof. Dr.-Ing. Juergen Schmidt del Karlsruher Institut for Technology (KIT), experto en seguridad de plantas químicas, dió un discurso intenso sobre gestión de riesgos y recalcó la necesidad de conceptos de protección inteligentes. Su punto de vista, según sus palabras “La protección no es solamente un papel, es la actitud ética de todos los operarios. Por lo tanto, las plantas industriales necesitan la mejor y más innovadora protección contra sobrepresión y explosiones”. Los accidentes en la indústria ocurren a diario y ponen en peligro vidas humanas. La cooperación entre KIT y REMBE® supone un intercambio activo con estudiantes y profesores para desarrollar nuevos productos para la seguridad de procesos. 


Aparte del Profesor Schmidt, también Dipl.-Ing. Richard Siwek, gerente de FireEx Consultant GmbH, tuvo una presentación, en la que habló sobre las fuentes de riesgo potenciales para explosiones de povlo en plantas industriales e informó a los participantes sobre las posibilidades de la analítica de riesgos y las últimas normativas y reglas del sector. “El proceso de producción debe ser monitoreado constantemente, para proteger la planta contra explosiones incontroladas”, explicó Mr. Siwek a la audiencia.

A REMBE® le encantan los dulces!

Dentro del marco de capacitaciones teoréticas, también hubo tiempo para ejemplos prácticos. Mr. Francesco Petruzzelli de la oficina italiana de REMBE®, explicó el concepto de seguridad REMBE® integrado en una fabrica de dulces. Aquí no sólo los procesos de producción se protegieron contra explosiones de polvos combustibles, también se aseguró la zona de carga de los camiones. La carga de camiones puede provocar reacciones electroestáticas, que pueden ser evitadas usando sistemas de puesta a tierra de la empresa colaboradora de REMBE®: KERSTING GMBH SAMPLING+GROUNDING. Gracias a REMBE® y KERSTING, tanto el cliente como sus dulces están seguros ahora.

Una protección inteligente para explosiones no tiene porqué necesariamente ser cara o complicada. Nuevas perspectivas y una tecnología innovadora permiten desviar llamas y ondas expansivas de forma controlada, evitándo las zonas de riesgo de explosión. Operarios y maquinaria están de esta forma protegidos de daños devastadores.

Primero, una explosión no es más que material ardiendo a gran velocidad en unos pocos milisegundos. Son las fuerzas de reacción liberadas durante este proceso, las que se esparcen en el área en forma de llamas y ondas expansivas, las que son especialmente peligrosas.

El proceso ocurre a una velocidad muy alta. Acciones controladas durante un evento de explosión son por lo tanto casi imposibles, al contrario de incidentes de fuego, los cuales ocurren a una velocidad relativamente lenta. En éste caso, una intervención correcta y rápida puede prevenir que ocurra lo peor.

Si se consideran las bases de una protección contra explosiones, solo 3 condiciones previas deben presentarse para causar una explosión de polvo:

- Por un lado debemos tener polvo combustible, dispersado en una nube;

- Por otro lado, debe haber oxígeno en el ambiente, para que se pueda crear una atmósfera explosiva;

- Finalmente, una pequeña fuente de ignición será suficiente para prender la mezcla de polvo y aire. Así, se puede desarrollar una bola de fuego extremadamente peligrosa para las áreas cercanas.

Prevención de explosiones de polvo

Hay diferentes acercamientos ante la prevención de explosiones de polvo. Todos se centran en reducir uno de los tres factores anteriormente mencionados, para minimizar la probabilidad de la aparición de una atmósfera favorable a una explosión. Ejemplos de medidas preventivas son la intertización de los equipos y evitar fuentes potenciales de ignición. Tambien, un mantenimiento regular de las máquinas así como la limpieza de las instalaciones reducen el riesgo de una explosión de polvo.

Sin embargo en la práctica hay numerosas aplicaciones donde uno de éstos factores es imposible de evitar, o al menos hasta los limites necesarios. El riesgo de una explosión no puede ser excluido por lo tanto, incluso cuando se han implementado todas las medidas de seguridad. Por esta razón, es importante preveer la reducción de los efectos hasta un nivel tolerable en el evento de una explosión. Estas medidas pueden resumir bajo los denominados sistemas de “protección constructiva contra explosiones”.

Diferentes opciones

Las medidas de protección para explosiones pueden ser implementadas de formas distintas. A continuación listamos los sistemas más comunes:

- Fabricación resistente a explosiones: cuando implementamos éste sistema, se debe asegurar que la planta y sus equipos estén construidos para aguantar una sobrepresión de mínimo 10 bar.

- Supresión de explosiones: En el evento de una explosión, esta será detectada en el menor tiempo posible. Un agente químico será inyectado para apagar las llamas. De esta manera, la explosión de polvo será suprimida.

- Venteo de explosiones: paneles de venteo liberan la onda expansiva y las llamas de forma segura a las áreas colindantes. El panel de venteo se diseña y construye acorde a las condiciones del proceso que prevalecen en la planta. A una presión especifica, tan baja como sea posible, el panel de venteo abrirá el así llamado área de venteo. Este área de venteo debe ser calculado de forma correcta para asegurar que su tamaño bastará para aliviar la presión causada por una explosión sin problemas.

- Venteo de explosiones sin llama: Si un equipo o componente esta situado en el interior de un edificio o en áreas en las que un venteo libre de explosiones y sus efectos podrían causar daños, un sistema de venteo de explosiones sin llama debe ser instalado. De esta manera, ondas expansivas y llamas quedan retenidas en un atrapallamas a la salida del panel de venteo, de manera que las zonas colindantes quedan protegidas de daños.

- Aislamiento de explosiones: En el caso de una explosión, los componentes de los equipos son aislados el uno del otro y del resto del proceso; p.ej. por una válvula anti-retorno para explosiones. Así queda asegurado que la explosión no propague las llamas entre equipos, aguas arriba o abajo. El polvo existente en éstos otros equipos podría prender también, causando una explosión secundaria.

Es esencial conocer los parámetros y las condiciones del proceso con la mayor precisión posible para la construcción de sistemas de protección para explosiones. Es necesario por lo tanto, para realizar los calculos del área de venteo con exactitud, tener en cuanta los datos del equipo que debemos proteger y también los datos y valores exactos del material existente.

 

Alivio de presión inteligente

Un venteo libre de explosiones solo puede ser dirigido a áreas seguras, debido a la onda expansiva y la llama saliente. Rutas internas de tráfico rodado o peatones, edificios o equipos cercanos pueden suponer un problema para la implementación de éstas medidas de protección. Muchas veces el operador no tiene más remedio que determinar áreas con grandes distancias de seguridad alrededor de los equipos para asegurar un venteo libre sin problemas. Esto supone costes de operación mayores para el operador. Estas áreas de seguridad no pueden tampoco usarse de forma operativa, ya que no está permitido entrar por el peligro extremo que conlleva. Es justamente en zonas donde encontramos tráfico rodado y peatonal, en las que el venteo libre de explosiones no puede ser aplicado. Venteo de explosiones sin llama o sistemas de supresión de explosiones son conceptos de protección ideales para reducir los efectos de una explosión al mínimo posible. Para muchos operadores de planta sin embargo, un venteo de explosiones controlado o dirigido es una alternativa practicable.

 

Interpretación problemática de especificaciones estándar

La desviación de llamas y ondas expansivas hacia areas no criticas está representado, entre otras, en el estándar EN 14491. En el anexo E, encontramos una referencia a las así llamadas “placas deflectoras”.  Estas se colocan de forma que los efectos de una explosión son desviados en un angulo de 45° a 60°.

La norma no contempla sin embargo, que las placas deflectoras deben ser fabricadas y sujetas con gran gasto económico, debido a las tremendas fuerzas que deberán soportar. Para un recipiente de 20 m³, estas fuerzas pueden llegar a 50 kN (5 t), con un ímpetu de 25 kNs. Adicionalmente, estos elementos representan una barrera enorme durante las operaciones cotidianas y ocupan espacio valuoso.

 

Un nuevo tipo de venteo de explosiones

Con este trasfondo, la empresa alemana de Brilon REMBE® desarrolló un nuevo tipo de venteo de explosiones. El Targo-Vent es un limitador del ángulo de apertura, especialmente desarrollado para paneles de venteo, que desvía la presión hacia un área definida.

Targo-Vent amortigua el panel de venteo de forma dinamica y progresiva y puede por lo tanto absorber de forma elástica grandes fuerzas quinéticas por si mismo. La malla amortiguadora absorbe la enorme fuerza repulsiva de la explosión y guía las llamas en la dirección requerida. Dependiendo de las condiciones de aplicación, la llama es desviada de forma ascendente en un ángulo definido de 30° a 45°. De ésta manera, ondas expansivas y llamas son dirigidas a una zone no crítica, lo cual permite al operador minimizar el área alrededor de los paneles de venteo del equipo y garantiza un uso seguro de las rutas de tráfico. Otra ventaja adicional en la práctica diaria es que el Targo-Vent está instalado de forma que ahorra espacio, sobre el panel de venteo. No se requieren placas metálicas costosas y complicadas de instalar. El sistema en si mismo está realizado en acero inoxidable libre de mantenimiento y no conlleva gastos anuales.

Reforma sencilla

El Targo-Vent esta disponible en todas las medidas estándar de paneles de venteo, por lo que es fácilmente aplicable a platas y sistemas existentes sin problemas.En combinación con paneles de venteo y discos de ruptura REMBE®, ha sido testeado y certificado acorde a la directiva Atex 94/9/EC (Atex 114) (FSA 13 Atex 1637).  Por lo tanto, Targo-Vent es la solución perfecta para instalaciones nuevas o existentes. El operador dispondrá de una protección inteligente para explosiones, que no conlleva altos costes ni instalaciones complicadas. Ondas expansivas y llamas son dirigidas a lugares seguros, de manera que tanto los operarios como las máquinas están protegidas contra daños devastadores.

REMBE® is now registered member of FPAL a supplier management community supporting the European Oil & Gas Industry.

FPAL supports the European Oil & Gas Industry with auditing for relevant suppliers. For more details please check http://www.achilles.com/en/find-your-achilles-community?id=409

###MEDIEN###

 

In order to better support its British Isles and continental European customer base, Rembe Ltd is now fully operational from its new 2300ft2 office and warehouse facility in Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ.

Mike MacClancy Rembe Ltd managing director explained why the company had made this move: “Since incorporating Rembe Ltd in August 2009, Rembe’s UK business in bulk solids explosion protection, flow control and process pressure relief has steadily grown in all areas and applications by offering an unprecedented level of service to all customers. We keep extensive stocks of an ever increasing range of products for fast response deliveries; 48 hours door-to-door at no additional premium charge is now becoming something of a daily occurrence. Servicing and commissioning is also now regularly undertaken from a growing mature staff.  Our previous facility was simply inadequate for our needs.” Colworth Science Park is the former headquarters of Unilever and is still used by Unilever R&D. The new premises offer high-speed fibre optic web connection and many state-of-the-art business facilities. Rembe Ltd’s central London offices are being retained.

 

source: http://www.eurobulksystems.com/readnews.aspx?id=460

For the second year running REMBE® have exhibited at ADIPEC in Abu Dhabi, an event which has become one of the key dates in the REMBE® exhibition calendar.

The exhibition allows customers in the Middle East the opportunity to meet with REMBE® and discuss how the REMBE® superior laser technology can help their organisation to improve process reliability and reduce operational costs.

REMBE® Business Development Director, Orhan Karagöz, said “The Middle East and Africa are important growing markets for REMBE® and exhibiting at ADIPEC is key to that growth.  I’m pleased to say it’s been another successful event for REMBE® and we are already starting our preparations for next year”

ADIPEC 2014 takes place in Abu Dhabi from 10th – 13th November.

Wood can burn –wood chips and pellets belong to the important secondary fuels category in modern power plants, furnaces or heat generators, so this is quite obvious. But although this feature of wood is known in general, it is still not common knowledge that this combustibility makes wood handling processes some of the most hazardous in industry from an explosion standpoint. Statistics about explosion incidents are evidence enough.

But what makes wood material and wood handling processes so special in terms of explosion hazards?

This question can be answered quite simply: Considering requirements of dust explosion phenomenon:
-    combustible dust
-    air / oxygen
-    effective ignitions sources
nearly all wood handling installations have the “perfect mixture” for dust explosions to occur.

Using the example of a fiber board plant, where all typical wood industry-related equipment such as silo´s, conveyors, screens, mills, dryers, cyclones and dust collectors are found, an explosion hazard is even more likely, as all the above-mentioned equipment creates wood dust causing explosive atmospheres. Additionally, given mechanical moving parts as well as drying processes, ignition sources are easily generated. In Autumn 2012, this deadly combination led to one of the most severe wood dust explosions in history in South America, where 5 people lost their lives and the entire plant was shut down for more than 5 months.

How to protect against explosion hazards in wood handling installations?


The explosion safety concept for such plants typically is made up of a combination of explosion prevention measures (to reduce the likelihood of explosion) and explosion protection measures (to reduce the effects of an explosion to an acceptable level).

Explosion Prevention means taking measures to prevent the formation of explosive dust clouds as well as avoiding ignition sources by dedusting, housekeeping, grounding, proper maintenance and/or spark extinguishers.

We know that even if all preventative measures are applied (especially with regard to the latter), this approach might lead to misapplication of spark extinguishers which
-    might not work if particles are large;
-    cannot suppress an explosion;
-    are only addressing the ignition risk arising from small, hot particles; and
-    do not prevent ignition sources from tramp metal or hot surfaces.

That is why protective measures also have to be applied in most wood handling installations. They typically apply one of three approaches:
-    explosion resistant design (simple explanation: make equipment so sturdy it will  withstand explosion overpressure of up to 10 bar)
-    explosion pressure venting (simple explanation: pressure and flame relief by applying a predetermined breaking point on the installation)
-    explosion suppression and (simple explanation: a rapid fire extinguisher that stops the flame )
-    plus: Explosion isolation (simple explanation: Prevent flame and/or pressure propagation to down or upstream units)

Due to minimal maintenance requirements and low invest costs, passive explosion protection approaches such as explosion pressure venting is the most commonly used in wood handling facilities. The fact that these burst panels can even be combined with flame-trapping mesh materials allows various applications to be protected by so called flameless vents.

As with any comprehensive safety concept, even a fully protected plant can only be secured when all relevant persons, situations and conditions are taken into account. In practice, this means that plant management in the wood handling industry has to be aware of the explosion risk in general, implement available explosion safety measures and educate plant personnel. The awareness of the need for combustible dust explosion safety has to be raised so that catastrophic events are not likely to endanger health, lives and business objectives such as profitability, continuity and productivity.

Therefore, a risk analysis should be carried out to identify the hazards and to allow the implementation of appropriate safety measures.

As an aside: The “butterfly” effect!


When conducting a risk analysis, all circumstances have to be taken into consideration – this last example impressively shows that even small “bugs” can influence the explosion risk of plants:

Several saw mill operators carried out a risk analysis and decided not to protect their installations that handle wood chips with normally high humidity content. These conditions changed following a pine beetle infestation that led to numbers of dead/dried trees. After a long period of quarantine, these trees were purchased at a low price and brought to the sawmill. Due to the pine beetle infestation, the resulting wood chips lots were drier than usual and many explosions occurred in the saw mill plants, lead to long downtimes and several injured people.


“Explosion protection is expensive!” - granted: In light of the considerably lower likelihood of occurrence of explosions in comparison with fires, the question of the meaningfulness of what are often more cost-intensive investments in appropriate explosion protection measures is understandable. Irrespective of the already superfluous - as it is legally required - discussion about the sense or nonsense of explosion protection, the introductory approval of the writer particularly with regards the often catastrophic scale of such events is put into perspective. However, more interesting in this context is the question of what in fact is to be understood by “appropriate” explosion protection measures? This article is intended to address this question on the basis of practical examples from the field of dust handling facilities.

According to TRGS 720 / TRBS 2152 “Hazardous explosive atmospheres”, the employer must determine and assess the risk of his employees as part of his obligations in accordance with the German Occupational Safety and Health Act [Arbeitsschutzgesetz] (including the Ordinance on Hazardous Substances [Gefahrstoffverordnung] and the Ordinance on Industrial Safety and Health [Betriebssicherheitsverordnung]) and implement the necessary safety measures. In accordance with this, he must check in the first stages of the hazard analysis whether there exist combustible materials and whether the formation of explosive atmospheres in hazardous quantities should be anticipated.

Explosion Prevention versus Explosion Protection

Although the legislative authority gives precedence explicitly to safety measures to avoid hazardous explosive atmospheres through substitute combustible materials, the experienced reader knows of the practical relevance of this preferred preventative measure. A baker simply needs flour and sugar to bake, a power station burns coal and sawdust naturally arises in chipboard factories. All these materials are capable of causes dust explosiv atmospheres. As a result, the explosion danger is essentially a given in all of the above examples.

So if hazardous explosive atmospheres cannot be safely prevented, the employer must assess the probability and duration of the occurrence of hazardous explosive atmospheres and the probability of the existence or arising of effective ignition sources. This stage of the assessment is commonly known in practice as “zoning” (see Table 1).

But what is frequently forgotten when implementing explosion safety measures in dust handling facilities, such as dust collectors, is the fact that the classification of hazardous places in terms of zones in accordance with TRGS 720 (1) 7. is ultimately only down to the so-called prevention of ignition sources.

Digression: Risk-based, probabilistic approach

In principle, the ignition prevention measures to be taken should make ignition sources ineffective or reduce the probability of it being effective. Consequently, the scope of explosion prevention measures complies with the probability of the occurrence of hazardous explosive atmospheres (zone). This probabilistic concept is based on the comparative assessment of the generally accepted residual risk (RREx), which arises from a combination of the severity (AS) and the probability of an explosion (PEx):

RREx = AS x PEx

In the case of an explosion, an unaccepted measure of damage is essentially anticipated. In consideration of the fact that the probability of an explosion is characterised by the probability of the existence of a hazardous explosive atmosphere (Pg.e.A) and the probability of the occurrence of an effective (of the thirteen in accordance with EN 1127) ignition source(s) (Pw.Z.),

PEx = Pg.e.A. x ∑ Pw.Z.

the following central requirement results:

RREx ~ Pg.e.A x ∑ Pw.Z. = const.

For this reason, in the practice of explosion protection, when applying the preventative measure of “Avoidance of Ignition Sources”, hazardous areas are only categorised into zones from these previous contexts in order to avoid ignition sources as follows

§  In zone 2 and 22: Ignition sources which can constantly or frequently occur.

§  In zone 1 and 21: As well as the ignition sources stated for zone 2 and 22, ignition sources which can occur occasionally, e.g. in foreseeable disturbances to a working material.

§  In zone 0 and 20: As well as the ignition sources stated for zone 1 and 21, ignition sources which can occur rarely.

By implication, this emphasises that the zoning is completely irrelevant in the case of the application of explosion protection measures, which reduce the effects of an explosion to an uncritical degree. The effects of an explosion in zone 20 are ultimately no more or less hazardous than those in zone 22.

In practice, for the aforementioned example of a dust collector system (see Fig. 1) which is protected with a flameless venting device and an explosion isolation flap valve, only measures to avoid ignition sources, but not to prevent ignition sources are obligatory. In the raw gas / dirty air section of the filter, which is normally classified as an hazardous place zone 20, also a rotary air lock of equipment category 3D could be used if this was also inspected and approved to be pressure shock resistant and flameproof. (Author’s comment: In all likelihood, most cases deal with identical devices, which are then only put onto the market with a different label).

However, a look into systems which are protected in practice shows that all (possible) stops are pulled out to apply preventative measures such as avoiding ignition sources, despite the existence of consequence-limiting measures.

In exaggerated terms, for dust collecting systems for example, in which often the (comparatively higher probability of) external ignition sources require measures of explosion protective measures, operators purchase and install any little explosion-proof equipment, even though the burst panel is fitted at the enclosure and already offers the legal safety level required. With regards to the comparably low probability of ignition within the design parameters of working equipment (see for example EN 13463-1 introduction), such “concepts” are reduced to absurdity. For example, a manufacturer recently applied for his silo discharge screws of equipment category 1D to be considered a unique selling point, although most of today’s silos are already protected by using explosion venting devices. So who does it surprise when the introductory cost-benefit issue of explosion safety is presented in light of such upwardly-forced investments?

It is beyond any question that only an “appropriate” mix of preventative and protective measures can lead to a consistent explosion safety concept. According to the interpretation of the author, the “freedom” of the designs of this “appropriate” explosion protection mix is meant in TRGS 720 / TRBS 2152, when the legislative authority speaks of “suitable combinations of preventative and constructive measures in accordance with expert judgement”. This interpretation is supported in the more precise interpretation of the European Directives 94/9/EC (ATEX 114) and 1999/92/EC (ATEX 153). According to these, all necessary measures must be taken to ensure that the workplace, the work equipment and the relevant connection devices are designed, constructed, assembled, installed, maintained and operated in a way to minimize the risk of explosions:

In view of equation 1, if the effects of an explosion are limited to an uncritical degree using explosion protective measures, an acceptable residual risk arises virtually independently of the probability of occurrence, with reference to the risk matrix, recognised by the professional industry and tried-and-tested in operational practice, of the VDI series of guidelines 2263 “Dust fires and dust explosions: Hazards, assessment, protective measures” (see Fig. 2).

What explosion protection can learn from explosion prevention

Although an explosion could essentially lead to catastrophic effects and death in any “zone”, similar to preventative explosion measure, in which the scope of measures is aligned as described to the “probability” (frequency and duration) of the occurrence of hazardous explosive atmospheres, the question of the requirement of a risk-oriented approach is raised in conclusion for protective explosion measures as well. The example of an system protected using explosion suppression, but the protective system of which was deactivated at the point of explosion, illustrates - if only in the approach - the necessity of such a reliability concept.

In the context, it becomes clear that a risk-oriented categorisation of protective explosion measures must also consequently occur with regards to the “probability” (frequency and duration) of the occurrence of effective ignition sources. In comparison with preventative explosion safety measures, with which an explosion is not permitted in principle, an impact-related categorisation must also take place, which considers the expected measure of damage.

A first approach to this is already stated by TRGS 721 / TRBS 2152-1, whereby the affected measures in “areas with explosion impacts exceeding the usual degree” in scope and type must be taken into account.

In areas, in which meeting places, corridors with dense traffic, residential buildings and larger office premises are in the hazardous area, only non-manipulatable or non-deactivatable, protective systems should be allowed to be used. Furthermore, with passive explosion protective systems, which are not normally installed and checked by the manufacturer, operators should consider the compliance with test requirements as per §§ 14 and 15 in connection with Appendix 4 Section A Number 3.8 of the BetrSichV.

On the basis of the experience of the author in the relevant expert committee activities, the development, coordination and validation of suitable assessment standards within the bodies of experts requires a considerable degree of work and time. For this reason, details of assessment standards for the categorisation of constructive protective measures and autonomous protective systems has not been entered into.

Summary

In this article, the contexts of preventative and protective explosion safety measures could be shown clearly, transparently and with regard to German and European legislation. It was comprehensively shown that an appropriate explosion safety concept, which is based predominantly on the use of protective measures (most-common example: explosion venting in connection with explosion isolated decoupling), permits the forgoing of additional preventative measures that become more cost-intensive. If ignition sources in explosion-prone systems cannot be avoided in operational practice with sufficient safety, then a safety-technical and economically reasonable combination of preventative and protective measures can be used according to professional discretion. In doing so, it is the operator’s responsibility to adjust the scope of preventative safety measures which purely reduce the probability of occurrence to their own requirements for a reliable yield and trouble-free value added. 

Brilon. A 40 year success story and 2 million Euros on new investments mean business is better than ever for REMBE®. It doesn’t come as a surprise that the good news reached the North Rhine Westphalia Ministry of Economic Affairs. The Minister himself congratulated the company at their 40th anniversary celebrations.

North Rhine Westphalia’s Minister for Economic Affairs, Garrelt Duin (SPD), was greeted by REMBE®’s managing director Stefan Penno on site in Brilon on 27/08/2013. The Minister who has been in office since 2012, visited REMBE® headquarters together with Brilon’s mayor Franz Schrewe (SPD) and other SPD delegates. During discussions with Stefan Penno and the REMBE® workforce the Minister was not only shown through the shop floor but also wanted to learn about the details of bursting disc manufacturing. He showed great interest and appeared enthused by his visit to the company site and REMBE®’s innovative potential. REMBE® is investing in total around 2 million Euros in new production processes and warehouse systems as well as software at its Brilon headquarters.  Structural expansion to accommodate the growth of the company is also planned. 

Plenty of reasons for REMBE® to celebrate

More than ever has REMBE® the reason to celebrate.  This year the annual REX convention again as with every year culminated with celebrations and this year it was to celebrate the company’s 40th birthday at the same time.  From the 4th to the 6th of September 2013 REMBE® greeted 70 international participants from Europe, USA, Asia and South America at the REX convention, a most important meeting for all REMBE® safety experts who represent REMBE® and their bursting discs and explosion protection safety systems all over the world. There were presentations of the latest technical developments and customised global business strategies combined with hands-on sesssions.  Of course with REMBE® things don’t end there. “REMBE®’s success story is very impressive” complimented Minister Duin during his visit.  A success story that is certain to continue in the future.  

 

 

Special attention is required when eliminating all possible potential sources of ignition such as; Mechanical or Electrically produced 'sparks', Frictional heat, Electrostatic charges (See note* below), Welding equipment etc. Not forgetting of course, the human factor.

Due to the seemingly endless sources for potential ignitions it is not hard to imagine the difficulty in eliminating them all. Removal of the fuel is impossible as this is what is being produced by the process in the plant that we are considering protecting. Removal of Oxygen is feasible but can only be achieved through vary expensive processing. The security limits here are also rapidly reached and the risk of a dust explosion cannot be excluded. Therefore a constructive and efficient explosion protection regime is required and essential.

NOTE* Contact KERSTING GMBH SAMPLING + GROUNDING, a REMBE® ALLIANCE company and refer to 'Grounding Systems

 

send enquiry